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Abstract The polygonal approximation problem is a primary problem in computer

graphics, pattern recognition, CAD/CAM, etc. In R2, the cone intersection method (CIM)

is one of the most eÆcient algorithms for approximating polygonal curves. With CIM Eu and

Toussaint, by imposing an additional constraint and changing the given error criteria, resolve

the three-dimensional weighted minimum number polygonal approximation problem with the

parallel-strip error criterion (PS-WMN) under L2 norm. In this paper, without any additional

constraint and change of the error criteria, a CIM solution to the same problem with the line

segment error criterion (LS-WMN) is presented, which is more frequently encountered than the

PS-WMN is. Its time complexity is O(n3), and the space complexity is O(n2). An approxi-

mation algorithm is also presented, which takes O(n2) time and O(n) space. Results of some

examples are given to illustrate the eÆciency of these algorithms.
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1 Introduction

Polygonal curves play an important role in many areas. Optimization and approximation algorithms

for polygonal curves are widely used. In computer graphics and image processing, these algorithms

can be used to obtain skeletons or outlines of objects[1�4]. In pattern recognition, these algorithms can

smooth away noise and help analyzing characteristic features[5]. In CAD (Computer-Aided Design),

the polygonal curve is a basic geometric entity. In CAM (Computer-Aided Manufacturing), these

algorithms reduce the line segments used in CNC (Computerized Numerical Control) paths so as to

reduce production cost. In communication, these algorithms can compress data and decrease the

transmission time requirements[4]. Above all, almost all kinds of curves have to be converted into

polygonal curves before being displayed on screens, and these algorithms can be applied to reduce

computer memory requirements and to speed up display[4].

An arbitrary polygonal curve, which can be represented as P = [p1; p2; : : : ; pn], is made up of a

chain of line segments [p1; p2]; [p2; p3]; : : : ; [pn�1; pn]. Let each vertex pi of P have a weight "i which

indicates the error tolerance of pi. The polygonal approximation problem is to �nd an approximating

polygonal curve P 0 = [p01; p
0

2; : : : ; p
0

m
], such that:

i) The sequence of vertices of P 0 is a subsequence of the sequence of vertices of P , and the two end

vertices of P 0 are often coincident with those of P , i.e., p01 = p1 and p0
m
= pn;

ii) Any line segment [p0
A
; p0
A+1] of P

0, which substitutes a subchain [pB ; pB+1; : : : ; pC ] of P , should

satisfy p0
A
= pB; p

0

A+1 = pC , and the given error criteria EC (pi; p
0

A
p0
A+1) � "i, 8i, B < i < C;

iii) m is minimum over all approximating polygonal curves that satisfy i) and ii).

Here, "i can be zero, which means that pi is a vertex of P 0. The formulae p01 = p1 and p0
m

= pn
ensure that P 0 retain some properties of P , e.g., open or close. Constraint i) is useful for vertices of

the approximating curve P 0 are exactly on P . This property can be used to reduce the accumulative
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error. The given formula for EC(pi; p
0

A
p0
A+1) determines how the error tolerance is measured, and

leads to di�erent approximation algorithms.

Miyaoku and Harada have classi�ed the polygonal approximation problems[6]. This paper dis-

cusses LS-WMN problem with L2 in R
3 (the three-dimensional weighted minimum number polygonal

approximation problem with the line segment error criterion under L2 norm). A brute force algorithm

of this problem is as follows:
1) Build the directed graph G(V;E) where V consists of the vertices of P , and E consists of the directed

edge that satis�es EC(pk; pipj) � "k, for all k, i < k < j. The number of edges in G(V;E) is O(n2). This

method for generating G(V;E) requires checking the relationship among every three vertices in P , so it requires

O(n3) time.

2) Find the shortest path from p1 to pn in G(V;E), which requires O(n2) time using forward dynamic

programming.

The CIM (Cone Intersection Method) is similar to the brute force algorithm except for the pro-

cedure of building G(V;E). The basic idea is to check as few vertices as possible. The CIM uses

the technique of the cone intersections to check the given error criteria EC(pk; pipj) � "k, for all k,

i < k < j. The diÆculties are:

(a) how to represent and obtain the cones, and

(b) how to represent and obtain the intersections of these cones.

Eu and Toussaint[1] thought that these two problems in R3 were too diÆcult while dealing with

PS-WMN problem with L2 in R
3 (the three-dimensional weighted minimum number polygonal approx-

imation problem with parallel-strip error criterion under L2 norm). Thus they imposed an additional

constraint on the problem, i.e., P should be strictly monotonic along the x-axis, and changed the

error tolerance region of the vertices from balls

ER(pi; "i) = fqjD(pi; q) � "ig;

into planar discs

ER1(pi; "i) = fqjD(pi; q) � "i and X(q) = X(pi)g;

where D(pi; q) is the distance from pi to q, X(pi) and X(q) are the x-coordinates of pi and q respec-

tively. Then, these planar discs are projected to a common plane, and the results are still planar

discs. The intersection of these projective planar discs is used in place of that of the corresponding

three-dimension cones. Certainly, the planar discs are much smaller than the balls, and the resulting

polygonal curve in general contains more vertices than that of the optimal result. Furthermore, the

CIM of Eu and Toussaint cannot be widely used because of the additional constraint.

Without increasing the time, space and implementation complexities, the method in the paper

removes the additional constraint and the substitution of the error tolerance criteria. Since the LS-

WMN problem is much more common than the PS-WMN problem, we discuss the LS-WMN problem

with L2 in R3. In fact the PS-WMN problem can also be solved and the answers to the above two

questions are presented in this paper.

In Section 5, we also present an approximation algorithm which takes O(n2) time and O(n) space.

In the penultimate section, the results of some examples are given to illustrate the eÆciency of these

algorithms.

2 De�nitions and Notations

The problem discussed in this paper is the LS-WMN problem with L2 in R
3. Suppose p; q; s; v; st ,

ed and cb 2 R3, r and rb 2 R. Some notations used in this paper are de�ned as follows:
X(p), Y (p) and Z(p) are the x-coordinate, y-coordinate and z-coordinate of p respectively.

D(p; q) =
p
(X(p)�X(q))2 + (Y (p)� Y (q))2 + (Z(p)� Z(q))2 is the distance between p and q.

L(p; q) = f(1� t)p+ tqjt 2 Rg is a line passing through p and q. When p and q are coincident, L(p; q) is

a set containing only one point.

HL(p; q) = f(1� t)p+ tqjt � 0; t 2 Rg is a ray that starts from p and passes through q. When p and q are

coincident, HL(p; q) degenerates into a one-point set.
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[p; q] = f(1� t)p+ tqj0 � t � 1; t 2 Rg is a line segment with p and q as the end points. When p and q are

coincident, [p; q] is constituted by only one point.

D(s; L(p; q)) = minfD(s;w)jw 2 L(p; q)g is the distance between the point s and the line L(p; q).

D(s;HL(p; q)) = minfD(s;w)jw 2 HL(p; q)g is the distance between the point s and the ray HL(p; q).

D(s; [p; q]) = minfD(s;w)jw 2 [p; q]g is the distance between s and the line segment [p; q]. EC(pk; pipj) is

equal to D(pk; [pi; pj ]) in this paper.

B(p; r) = fqj(X(p) � X(q))2 + (Y (p) � Y (q))2 + (Z(p) � Z(q))2 = r2g is the surface of a ball with the

center point p and the radius r.

BS(p; r) = fqj(X(p)�X(q))2+(Y (p)�Y (q))2+(Z(p)�Z(q))2 � r2g is a solid ball with the center point

p and the radius r.

CB(p; r) = fwjD(w;HL(cb; p)) = r, w 2 B(cb; rb), w 2 R
3g is a circle on the ball B(cb; rb) if p 2 B(cb; rb).

ArcB(p; r; st; ed) is an arc on the ball B(cb; rb), which lies on the circle CB(p; r), starting from st and

ending at ed in counterclockwise order according to the direction (p� cb), if CB(p; r) is a circle on B(cb; rb).

DB(p; r) = fwjD(w;HL(cb; p)) � r, w 2 B(cb; rb), w 2 R
3g is a disc on the ball B(cb; rb) if p 2 B(cb; rb).

OC(p; q; r) = fsjw 2 HL(p; s), w 2 BS(q; r)g is called an open cone. Note that OC(p; q; r) is equal to R3

if D(p; q) � r.

ER(pi; "i) = fwjD(pi; w) � "i, w 2 R3g is the error tolerance region at pi, where pi is a vertex of the

polygonal curve P , and "i is the weight (i.e. the error tolerance) of pi.

PP(p; q) = fwjq 2 HL(p; w), w 2 B(p; 1)g is the set containing the projection point of q on the unit ball

B(p; 1). Note that if p and q are coincident, PP(p; q) is the whole unit ball B(p; 1).

PR(p; q; r) = OC (p; q; r) \B(p; 1) is the projection of the open cone OC (p; q; r) on the unit ball B(p; 1).

3 Theories of the Algorithm

Theorem 1. Let [pA; pB ; pC ] be a subchain of P . [pA; pB ; pC ] can be approximated by [pA; pC ] if

and only if pC 2 OC (pA; pB ; "B) and pA 2 OC (pC ; pB ; "B).

Proof. According to the de�nition of polygonal approximation problem, [pA; pB ; pC ] can be approxi-

mated by [pA; pC ] if and only if D(pB; [pA; pC ]) � "B, i.e., [pA; pC ] \BS (pB; "B) 6= �. Since [pA; pC ] =

HL(pA; pC) \ HL(pC ; pA), [pA; pC ] \ BS (pB; "B) 6= � if and only if HL(pA; pC) \ BS (pB; "B) 6= � and

HL(pC ; pA) \ BS (pB; "B) 6= �. According to the de�nition of the open cone OC(p; q; r) in Section 2,

HL(pA; pC)\BS(pB ; "B) 6= � if and only if pC 2 OC (pA; pB ; "B), and HL(pC ; pA)\BS (pB; "B) 6= � if

and only if pA 2 OC (pC ; pB ; "B). Therefore, [pA; pB ; pC ] can be approximated by [pA; pC ] if and only

if pC 2 OC (pA; pB ; "B) and pA 2 OC (pC ; pB ; "B). 2

Corollary 1. Let [pA; pA+1; : : : ; pB ] be a subchain of P. [pA; pA+1; : : : ; pB ] can be approximated by

[pA; pB ] if and only if pB 2
B�1
\

i=A+1
OC (pA; pi; "i) and pA 2

B�1
\

i=A+1
OC (pB; pi; "i).

Corollary 2. Let [pA; pA+1; : : : ; pB ; pB+1; : : : ; pC ] be a subchain of P, and A < B < C. If
B

\
i=A+1

OC (pA; pi; "i) = � or
C�1
\
i=B

OC (pC ; pi; "i) = �, [pA; pA+1; : : : ; pC ] cannot be approximated by

[pA; pC ].

From the two corollaries above, it is very easy to obtain the CIM in R3. However, as mentioned in

the �rst section, the two diÆculties of CIM in R3 remain unresolved. If we use the open cone directly,

the computation will be very complex. Fortunately, we do not need to know the exact intersections

of the open cones. Only the results of whether the intersections containing the points are required.

Therefore, we can substitute the open cones with some discs on a unit ball or the unit ball itself.

Furthermore, these discs can be obtained easily, and computing the intersections of these discs is not

complex.

Theorem 2. Let [pA; pB ; pC ] be a subchain of P. [pA; pB ; pC ] can be approximated by [pA; pC ] if

and only if PP(pA; pC) � PR(pA; pB ; "B) and PP(pC ; pA) � PR(pC ; pB ; "B).

Proof. PP(pA; pC) � PR(pA; pB ; "B) if and only if HL(pA; pC) � OC (pA; pB ; "B). HL(pA; pC) �

OC (pA; pB ; "B) if and only if pC 2 OC (pA; pB ; "B). So PP(pA; pC) � PR(pA; pB ; "B) if and only if pC 2

OC (pA; pB ; "B). In the same way, PP(pC ; pA) � PR(pC ; pB ; "B) if and only if pA 2 OC (pC ; pB ; "B).

Then from Theorem 1, we can obtain Theorem 2. 2
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Corollary 3. Let [pA; pA+1; : : : ; pB ] be a subchain of P. [pA; pA+1; : : : ; pB ] can be approximated by

[pA; pB ] if and only if PP(pA; pB) 2
B�1
\

i=A+1
PR(pA; pi; "i) and PP(pB ; pA) 2

B�1
\

i=A+1
PR(pB; pi; "i).

Corollary 4. Let [pA; pA+1; : : : ; pC ] be a subchain of P, and A < B < C. If
B

\
i=A+1

PR(pA; pi; "i) =

� or
C�1
\
i2B

PR(pC ; pi; "i) = �, then [pA; pA+1; : : : ; pC ] cannot be approximated by [pA; pC ].

This solves the presentation problem of the open cones used by CIM in R3. The following formula

illuminates how to obtain these open cones.

Formula 1. PR(pA; pi; "i), i.e., the projection of the open cone OC(pA; pi; "i) on the unit ball

B(pA; 1), can be calculated by

PR(pA; pi; "i) =

�
DB(qi; ei); D(pA; pi) > "i;

B(pA; 1); D(pA; pi) � "i
;

where qi = (pi � pA)=D(pi; pA) + pA, ei = "i=D(pi; pA), and DB(qi; ei) is a disc on B(pA; 1).

The intersection can be represented by a close chain of arcs on the balls, denoted by ArcB de�ned

in Section 2. Getting the intersection of the projections of these open cones is similar to the case of

the planar discs in R2.

Lemma 1. The intersection of two di�erent circles CB(qi; ei) and CB(qj; ej), which is on the

same ball B(pA; r), has no more than two vertices (i.e., the joining points of the close chain of the

arcs).

Lemma 1 can be deduced from the facts that three nonlinear points determine one circle, and that

three di�erent points on the same circle are nonlinear.

Lemma 2.
n

\
i=1

DB(qi; ei), i.e., the intersection of n discs on a ball, consists of no more than

2(n� 1) vertices (i.e., the joining points of the close chain of the arcs) if no disc is larger than a half

ball.

The method used to prove Lemma 3.2 in [1] can also be used to prove Lemma 2 in this paper.

Lemma 1 and Lemma 2 will be used to calculate the intersections of the projections of the open

cones, i.e.,
B�1
\

i=A+1
PR(pA; pi; "i) and

B�1
\

i=A+1
PR(pB; pi; "i), and illuminate the time complexity of the

algorithms.

4 Optimization Algorithm

According to Corollary 3, we can �nd all edges of G(V;E); and according to Corollary 4, we

can determine when to stop working on the successive vertices while checking the error criteria. We

describe the algorithm as follows. The direction of each edge in G(V;E) is from the vertex with smaller

subscript to that with larger subscript, thus [pi; pj ], which is used to indicate the line segment, can

also be used to represent the directed edge without confusion.

Algorithm. CIM Algorithm for Approximating Three-Dimensional Polygonal Curves

Input: Arbitrary polygonal curve P = [p1; p2; : : : ; pn] inR
3 with associated error tolerances f"1; "2; : : : ; "ng.

Output: Approximating curve P 0 = [p01; p
0

2; : : : ; p
0

m].

1. for i = 1 to n� 1 do fTo build graph G(V;E)g

begin

IPR B(pi; 1);

for j = i+ 1 to n and while IPR 6= � do

begin

if PP(pi; pj) 2 IPR then G G [ [pi; pj ]

IPR IPR\PR(pi; pj ; "j)

end fEnd of inner for-loopg

end fEnd of outer for-loopg
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2. for i = n to 2 do fTo check edges in graph G(V;E)g

begin

IPR B(pi; 1);

k  minfhj[ph; pi] 2 Gg;

for j= i� 1 to 1 and while IPR 6= � do

begin

if [pj ; pi] 2 G and PP(pi; pj) 62 IPR then G G� [pj ; pi];

if k � j then

break; fJump out of inner for-loopg

IPR IPR\PR(pi; pj ; "j)

if IPR= � then G G� f[ph; pi]jh < jg

end fEnd of inner for-loopg

end fEnd of outer for-loopg

3. Output the shortest path from p1 to pn according to G(V;E), using forward dynamic programming.

End of CIM Algorithm

Since IPR consists of at most O(n) discs according to Lemma 2, testing PP(pi; pj) 2 IPR requires

O(n) time, and obtaining IPR\PR(pi; pj ; "j) also requires O(n) time. Hence, Step 1 has O(n3) time

complexity. The edges of G(V;E) are obtained from Step 1, so they can be ordered. Therefore,

determining minfhj[ph; pi] 2 Gg requires only O(n) time, and obtaining f[ph; pi]jh < jg requires O(n)

time. Hence, Step 2 has O(n3) time complexity. Since G(V;E) has O(n2) edges, the time complexity

of Step 3 is O(n2).

In practice, the minimization of the vertices is not always mandatory, especially if it is at the

expense of requiring much more time or space. An approximation algorithm is given below; it only

requires O(n2) time and O(n) space.

5 Approximation Algorithm

In order to �nd a fast algorithm, we substitute Theorem 2, which speci�es the suÆcient and

necessary conditions, with Theorem 3, which speci�es the suÆcient conditions.

Theorem 3. Let [pA; pB; pC ] be a subchain of P . [pA; pB ; pC ] can be approximated by [pA; pC ] if

PP(pA; pC) � PR(pA; pB; "B) and D
2(pA; pC) � D2(pA; pB)� "2

B
.

Firstly, according to Theorem 3, we can omit Step 2 of the CIM algorithm in Section 4. Secondly,

we do not need to search for every approximating line segment. Therefore, the graph G(V;E) is not

needed in the approximation algorithm. The approximation algorithm is described as follows.

Algorithm. Approximation Algorithm

Input: Arbitrary polygonal curve P = [p1; p2; : : : ; pn] inR
3 with associated error tolerances f"1; "2; : : : ; "ng.

Output: Approximating curve P 0 = [p01; p
0

2; : : : ; p
0

m].

i = 1;

output p1;

while i < n do

begin

IPR B(pi; 1);

for j = i+ 1 to n� 1 do

begin

rt = (pj � pi) � (pj � pi)� "j�"j ;

if j = i+ 1 then

rr = rt ; fTo set the initial value of rrg

else

begin

if (pj � pi) � (pj � pi) < rr or PP(pi; pj) 62 IPR, then begin

output pj�1;

break; fJump out of for-loopg

end fEnd of ifg
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if rr<rt, then rr= rt;

end fEnd of elseg

IPR IPR\PR (pi; pj ; "j)

end fEnd of for-loopg

i j � 1;

end fEnd of while loopg

output pn;

End of Approximation Algorithm

The boundary of IPR consists of O(n) ArcBs, so the time complexity of calculating IPR\PR(pi; pj ,

"j) is O(n). Although the approximation algorithm has two nested loops, its time complexity is O(n2).

Because IPR requires O(n) space, the space complexity of the algorithm is O(n).

6 Examples

First, we use the points evenly distributed on some B�ezier curves as examples, and the results

can be checked by readers. The �rst B�ezier curve has eight control points, (0; 0; 0), (40; 240; 50),

(100; 300; 100), (120; 40; 0), (160; 100; 0), (220; 30; 0), (240; 300; 300) and (300; 250; 250), and is denoted

by C1. The second one has �ve control points, (0; 0; 350), (100; 400; 50), (200; 350; 0), (300; 0; 400) and

(400; 300; 100), and is denoted by C2. The third one has nine control points, (0; 0; 0), (200; 0; 0),

(400; 0; 0), (400; 200; 100), (400; 400; 200), (200; 400; 200), (0; 400; 200), (0; 200; 100) and (0; 0; 0), and

is denoted by C3, which cannot be approximated by the algorithm of Eu and Toussaint. The num-

ber of sampled points is denoted by M. All of the associated error tolerances have the same value,

although they might be di�erent. We have implemented four algorithms: the brute force algorithm,

the algorithm of Eu and Toussaint, the optimization algorithm using CIM and the approximation

algorithm using CIM. All these algorithms are implemented with Visual C++ 5.0 under Windows 98

Table 1. The EÆciency of the Optimization

Algorithm Using CIM

Curve M "i Result (vertices) Time (ms)

C1 21 10 7 9

C1 101 1 20 130

C1 101 1e�1 78 25

C1 301 1e�2 240 70

C1 1001 1e�3 772 255

C1 5001 1e�4 2089 2620

C2 21 10 7 8

C2 101 1 20 125

C2 151 1e�1 68 69

C2 401 1e�2 245 145

C2 1001 1e�3 777 265

C2 5001 1e�4 2071 2570

Table 2. The EÆciency of the

Brute Force Algorithm

Curve M "I Result (vertices) Time (ms)

C1 21 10 7 2

C1 101 1 20 70

C1 101 1e�1 78 45

C1 301 1e�2 240 385

C1 1001 1e�3 772 4191

C1 5001 1e�4 2089 105030

C2 21 10 7 3

C2 101 1 20 70

C2 151 1e�1 68 105

C2 401 1e�2 245 688

C2 1001 1e�3 777 4089

C2 5001 1e�4 2071 104980

Table 3. The EÆciency of the Algorithm

of Eu and Toussaint

Curve M "i Result (vertices) Time (ms)

C1 21 10 10 5

C1 101 1 27 80

C1 101 1e�1 88 15

C1 301 1e�2 267 40

C1 1001 1e�3 872 151

C1 5001 1e�4 3030 1525

C2 21 10 10 5

C2 101 1 27 80

C2 151 1e�1 107 45

C2 401 1e�2 322 80

C2 1001 1e�3 882 155

C2 5001 1e�4 3351 1570

Table 4. The EÆciency of the Approximation

Algorithm Using CIM

Curve M "i Result (vertices) Time (ms)

C1 21 10 7 0

C1 101 1 20 10

C1 101 1e�1 78 5

C1 301 1e�2 240 15

C1 1001 1e� 3 772 60

C1 5001 1e�4 2089 370

C2 21 10 7 0

C2 101 1 20 10

C2 151 1e�1 68 10

C2 401 1e�2 245 28

C2 1001 1e�3 777 60

C2 5001 1e�4 2071 350
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Fig.1. Approximate C1 (M = 101; "i = 10). (a) Result of the optimization algorithm using CIM or the brute force

algorithm (5 segments). (b) Result of the algorithm of Eu and Toussaint (7 segments). (c) Result of the approximation

algorithm using CIM (6 segments).

Fig.2. Approximate C2 (M = 21; "i = 10). (a) Result of the optimization algorithm using CIM or the brute force

algorithm (6 segments). (b) Result of the algorithm of Eu and Toussaint (9 segments). (c) Result of the approximation

algorithm using CIM (6 segments).

on a personal computer with Pentium II 350

CPU chip and 64M memory (Tables 1{4, Figs.1{

3). The results of the brute force algorithm and

the optimization algorithm using CIM are the

same, but with di�erent eÆciency.

Another example is from a military project us-

ing the �nite element analysis on some large-scale

landing crafts. The sampled points on the crafts

are preprocessed before the models of these crafts

are reconstructed in computers. Fig.4 shows the

shape of the boundary curve of the large-scale

landing craft. Table 5 shows the preprocessing

results for the boundary curve from A to B.

From the above tables, we can �nd that the

time required by the brute force algorithm in-

creases sharply when the number of the sampled

Fig.3. Approximate C3 (M = 101; "i = 10). Note that

this curve cannot be approximated by the algorithm of Eu

and Tousssaint. (a) Result of the optimization algorithm

using CIM or the brute force algorithm (9 segments). (b)

Result of the approximation algorithm using CIM (9 seg-

ments).

Fig.4. The boundary curve of a large-scale landing craft.

Table 5. Approximation Results of the Boundary Curve

Optimization algorithm Brute force Algorithm of Approximation algorithm

using CIM algorithm Eu and Toussaint using CIM

Result (vertices) 201 201 251 201

Time (ms) 135 300 145 35
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points and the number of the resulting points increase. The results of the algorithm of Eu and

Toussaint have more points than the other three algorithms, since the disc used by Eu and Toussaint

as the error tolerance region of any vertex is smaller than the ball used by the other three algorithms.

Additionally, C3 cannot be approximated by the algorithm of Eu and Toussaint. According to the

tables above, the results of the approximation algorithm are very close to the optimization algorithm,

and its cost is much lower.

7 Conclusion

Without any additional constraint, we present the solution to the LS-WMN problem with L2 in

R3. If the polygonal curve is used to approximate a G1 curve, and if the minimization of vertices

is not mandatory, the approximation algorithm may be preferable, for it has much lower cost and

produces only a few more vertices than that of the optimization algorithm.

In this paper, we have made the CIM feasible in R3, which means that not only a more eÆcient

algorithm is realized, but also the CIM has been proved to be applicable in both R2 and R3. The

di�erences only consist of:
1. representations of points, vectors and open cones,

2. methods of deciding whether a vertex lies in the open cone, and

3. methods of computing the intersections of the open cones (or the projections of the open cones).

This property �ts well with object-oriented software, thus the codes of CIM can be shared in both

R2 and R3.
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